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Experimental Details 

Optical simulation. All simulations were conducted using the semi-empirical models developed 

previously for Ag1 and Cu@r-GO core−shell2 nanowires. Briefly, the transmittance (T) and haze 

(H) were calculated using the Mie formalism for core−shell rods.3-5 The optical constants of Cu 

and Ag, and the diameters of core D2 and shell D1 were used as input into the Mie equation to 

calculate T and H as a function of surface areal coverage s using equation A9 and A10 in ref. 1. 

The calculation also requires an “effective refractive index” for the Fresnel transmission factor for 

the Cu@Au film on glass. It was found that neff ~1.1 gave the best fit to the H vs T data, which 

was reasonable considering that Cu has real index between 0.2 and 1 in the visible wavelength 

range.6 No binder was used (i.e the Cu@Au films were in air) and the surface coverage was s ~ 

0.2–0.4. The sheet resistance Rs of the core−shell nanowire film was calculated using the same 

approach as for Ag nanowires (equation 18 in ref. 1) but modified to account for the core−shell 

geometry as two resistors in parallel with resistivities 2 (inner core) and 1 (outer shell), 

respectively. After some manipulation, the sheet resistance equation becomes: 
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Where 𝑟 = (
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2
, s is the surface areal fraction covered by nanowires, c is the critical 

percolation areal fraction 𝜙𝑐 =
18<𝐷1><𝐿>

<𝐿2>
, L is the length of the nanowires, t is the critical 

exponent for electrical percolation in 2D networks (t ~ 1.3), and C is a parameter to account for 

contact resistance Rj between nanowires . When C~1 then Rj ~0.  
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Figure S1. TEM image (a) and EDS mapping (b) of the product mixture obtained via a fast 

injection of the oleylamine dispersion of gold(III) chloride trihydrate (Scheme 1, route 1). TEM 

image (c), UV−vis absorption spectrum (d) and XRD (e) of small nanoparticles separated from the 

product mixture. The arrows in the HAADF-STEM image (top left in b) indicate surface pits on 

the nanowires. 
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Figure S2. TEM image of the nanowires obtained via a slow injection of the oleylamine 

dispersion of gold(III) chloride trihydrate (Scheme 1, route 2). 
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Figure S3. Reduction kinetics studies of gold(III) chloride trihydrate at 140 oC under different 

ligand environments. UV−vis absorption spectra and corresponding digital images of reaction 

solutions recorded at different reaction times (second) after injecting the gold(III) chloride 

trihydrate pre-dispersed in 1 mL of OAm (a) and TOP (b) into 5 mL of pre-heated OAm. 
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Figure S4. The compositional line profiles of copper (green) and gold (red) across three aligned 

nanowires. Scale bar: 10 nm. 
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Figure S5. TEM images at different magnifications of the nanotubes produced by acid corrosion 

of Cu@Au core−shell nanowires. 
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Figure S6. SEM images of transparent conducting films that are made on thin glass slides with 

different nanowire loadings. 
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Figure S7. Transmittance spectra of transparent conducting films made from Cu@Au core−shell 

nanowires. The black lines are all Cu@Au (2 nm Au) with loading amount changed; the red line is 

Cu@Au (1 nm Au) with a similar loading to one of the black lines. 
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Figure S8. Simulated transmittance versus the sheet resistance (a) and simulated haze versus 

transmittance (b) of simplified nanowire structures: Cu (d = 17 nm), Cu@Au (d= 19 nm with 1 

nm Au shell), and Cu@Au (d = 21 nm with 2 nm Au shell). 
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Figure S9. EDS mapping of Cu@Ag nanowires (Cu90Ag10). Scale bar: 40 nm. 
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